Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.489
Filtrar
1.
Pflugers Arch ; 474(10): 1091-1106, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35819489

RESUMO

Acetylcholine (ACh), which activates muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs), enhances airway ciliary beating by increasing the intracellular Ca2+ concentration ([Ca2+]i). The mechanisms enhancing airway ciliary beating by nAChRs have remained largely unknown, although those by mAChRs are well understood. In this study, we focused on the effects of α7-nAChRs and voltage-gated Ca2+ channels (CaVs) on the airway ciliary beating. The activities of ciliary beating were assessed by frequency (CBF, ciliary beat frequency) and amplitude (CBD, ciliary bend distance) measured by high-speed video microscopy. ACh enhanced CBF and CBD by 25% mediated by an [Ca2+]i increase stimulated by mAChRs and α7-nAChRs (a subunit of nAChR) in airway ciliary cells of mice. Experiments using PNU282987 (an agonist of α7-nAChR) and MLA (an inhibitor of α7-nAChR) revealed that CBF and CBD enhanced by α7-nAChR are approximately 50% of those enhanced by ACh. CBF, CBD, and [Ca2+]i enhanced by α7-nAChRs were inhibited by nifedipine, suggesting activation of CaVs by α7-nAChRs. Experiments using a high K+ solution with/without nifedipine (155.5 mM K+) showed that the activation of CaVs enhances CBF and CBD via an [Ca2+]i increase. Immunofluorescence and immunoblotting studies demonstrated that Cav1.2 and α7-nAChR are expressed in airway cilia. Moreover, IL-13 stimulated MLA-sensitive increases in CBF and CBD in airway ciliary cells, suggesting an autocrine regulation of ciliary beating by CaV1.2/α7-nAChR/ACh. In conclusion, a novel Ca2+ signalling pathway in airway cilia, CaV1.2/α7-nAChR, enhances CBF and CBD and activates mucociliary clearance maintaining healthy airways.


Assuntos
Acetilcolina , Canais de Cálcio Tipo L , Cílios , Mucosa Respiratória , Receptor Nicotínico de Acetilcolina alfa7 , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Colinérgicos/farmacologia , Cílios/efeitos dos fármacos , Cílios/fisiologia , Interleucina-13/metabolismo , Camundongos , Agonistas Nicotínicos/farmacologia , Nifedipino/farmacologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
2.
Toxicol Appl Pharmacol ; 435: 115850, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34968637

RESUMO

Cigarettes consumption is continued to be popular. We found that cigarette smoke (CS) exposure promoted prostatic fibrosis. In this study, human prostate epithelial RWPE-1 cells were co-cultured with exosomes derived from CS exposed-WPMY-1 cells (CS-WPMY-1-exo). The collagen deposition, primary ciliogenesis, epithelial-mesenchymal transition (EMT) and transforming growth factor (TGF)-ß1 level of RWPE-1 were evaluated. The circRNAs profiles of WPMY-1-exo were explored by high-throughput RNA sequencing. It was found that CS-WPMY-1-exo significantly promoted RWPE-1 collagen deposition, EMT and primary ciliogenesis. There were 17 differentially expressed (DE) circRNAs (including circ_0001359) between CS-WPMY-1-exo and the negative control. Functional enrichment analyses showed that the DE circRNAs played important roles in ciliary basal body, spindle microtubule and TGF-ß signaling pathway. Circ_0001359 siRNA attenuated CS-WPMY-1 induced RWPE-1 cells collagen deposition, EMT and primary ciliogenesis, as well as inhibited the level of TGF-ß1. The whole results showed that circ_0001359 derived from CS-WPMY-1-exo contributed to prostatic fibrosis via stimulating epithelial cells phenotypes changes and collagen deposition.


Assuntos
Cílios/efeitos dos fármacos , Colágeno/metabolismo , Células Epiteliais/metabolismo , Exossomos/metabolismo , Próstata/patologia , Fumaça/análise , Células Estromais/efeitos dos fármacos , Produtos do Tabaco/análise , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Microtúbulos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta
3.
Mol Neurobiol ; 59(1): 245-265, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34665407

RESUMO

The melanin-concentrating hormone (MCH) system is involved in numerous functions, including energy homeostasis, food intake, sleep, stress, mood, aggression, reward, maternal behavior, social behavior, and cognition. In rodents, MCH acts on MCHR1, a G protein-coupled receptor, which is widely expressed in the brain and abundantly localized to neuronal primary cilia. Cilia act as cells' antennas and play crucial roles in cell signaling to detect and transduce external stimuli to regulate cell differentiation and migration. Cilia are highly dynamic in terms of their length and morphology; however, it is not known if cilia length is causally regulated by MCH system activation in vivo. In the current work, we examined the effects of activation and inactivation of MCH system on cilia lengths by using different experimental models and methodologies, including organotypic brain slice cultures from rat prefrontal cortex (PFC) and caudate-putamen (CPu), in vivo pharmacological (MCHR1 agonist and antagonist GW803430), germline and conditional genetic deletion of MCHR1 and MCH, optogenetic, and chemogenetic (designer receptors exclusively activated by designer drugs (DREADD)) approaches. We found that stimulation of MCH system either directly through MCHR1 activation or indirectly through optogenetic and chemogenetic-mediated excitation of MCH-neuron, caused cilia shortening, detected by the quantification of the presence of ADCY3 protein, a known primary cilia marker. In contrast, inactivation of MCH signaling through pharmacological MCHR1 blockade or through genetic manipulations - germline deletion of MCHR1 and conditional ablation of MCH neurons - induced cilia lengthening. Our study is the first to uncover the causal effects of the MCH system in the regulation of the length of brain neuronal primary cilia. These findings place MCH system at a unique position in the ciliary signaling in physiological and pathological conditions and implicate MCHR1 present at primary cilia as a potential therapeutic target for the treatment of pathological conditions characterized by impaired primary cilia function associated with the modification of its length.


Assuntos
Núcleo Caudado/metabolismo , Cílios/metabolismo , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Hormônios Hipofisários/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Somatostatina/metabolismo , Animais , Núcleo Caudado/efeitos dos fármacos , Cílios/efeitos dos fármacos , Hormônios Hipotalâmicos/genética , Melaninas/genética , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Optogenética , Hormônios Hipofisários/genética , Córtex Pré-Frontal/efeitos dos fármacos , Pirimidinonas/farmacologia , Ratos , Ratos Wistar , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/antagonistas & inibidores , Receptores de Somatostatina/genética , Tiofenos/farmacologia
4.
ACS Chem Biol ; 16(11): 2665-2672, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34761911

RESUMO

Cilia are organelles for cellular signaling and motility. They are assembled in G0/G1 and disassembled prior to mitosis. Compared to what is known about ciliary assembly, less is understood about ciliary disassembly. To uncover new mechanisms of ciliary disassembly, we performed an unbiased chemical screen. Chlamydomonas reinhardtii cells were experimentally induced for ciliary disassembly by treatment with sodium pyrophosphate. An FDA approved drug library (HY-L022P-1, MedChemExpress) was used for the screening. Primary screening with further experiments has identified microtubule stabilizer taxanes, CDK4/6 inhibitor abemaciclib and Raf inhibitor dabrafenib being effective in inhibiting ciliary disassembly induced experimentally but also under physiological conditions. In addition, their effects on ciliary disassembly in mammalian cells has also been confirmed. Thus, our studies have not only revealed new mechanisms in ciliary disassembly but also provided new tools for studying ciliary disassembly. These discovered drugs may be used for therapeutic interventions of disorders involving ciliary degeneration such as retinopathies.


Assuntos
Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Chlamydomonas reinhardtii/efeitos dos fármacos , Cílios/efeitos dos fármacos , Difosfatos/farmacologia , Imidazóis/farmacologia , Oximas/farmacologia , Taxoides/farmacologia , Transporte Biológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Transformada , Humanos
5.
Cells ; 10(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685691

RESUMO

Seizure threshold 2 (SZT2) is a component of the KICSTOR complex which, under catabolic conditions, functions as a negative regulator in the amino acid-sensing branch of mTORC1. Mutations in this gene cause a severe neurodevelopmental and epileptic encephalopathy whose main symptoms include epilepsy, intellectual disability, and macrocephaly. As SZT2 remains one of the least characterized regulators of mTORC1, in this work we performed a systematic interactome analysis under catabolic and anabolic conditions. Besides numerous mTORC1 and AMPK signaling components, we identified clusters of proteins related to autophagy, ciliogenesis regulation, neurogenesis, and neurodegenerative processes. Moreover, analysis of SZT2 ablated cells revealed increased mTORC1 signaling activation that could be reversed by Rapamycin or Torin treatments. Strikingly, SZT2 KO cells also exhibited higher levels of autophagic components, independent of the physiological conditions tested. These results are consistent with our interactome data, in which we detected an enriched pool of selective autophagy receptors/regulators. Moreover, preliminary analyses indicated that SZT2 alters ciliogenesis. Overall, the data presented form the basis to comprehensively investigate the physiological functions of SZT2 that could explain major molecular events in the pathophysiology of developmental and epileptic encephalopathy in patients with SZT2 mutations.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mapas de Interação de Proteínas , Aminoácidos/deficiência , Animais , Proteínas Sanguíneas/farmacologia , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Organogênese/efeitos dos fármacos , Análise de Componente Principal , Mapas de Interação de Proteínas/efeitos dos fármacos , Sirolimo/farmacologia
6.
Food Chem Toxicol ; 157: 112606, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34653555

RESUMO

Evaluating the safety of previously fabricated and effective green synthetized colloidal silver (GSCS) on the mucosal barrier structure and function is essential prior to conduct human trials. The GSCS was applied to primary human nasal epithelial cells (HNECs) grown in an air-liquid interface (ALI) culture. Epithelial barrier integrity was evaluated by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran paracellular permeability. Ciliary beat frequency (CBF) was quantified. Effects of the GSCS on cell viability and inflammation were examined through lactate dehydrogenase, the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide viability assay and interleukin 6 (IL-6) enzyme linked immunosorbent assay. The localization and transportation of GSCS within HNECs and their HNEC-ALI cultures was assessed by transmission electron microscopy and inductively coupled plasma-mass-spectrometry, respectively. Application of GSCS to HNECs-ALI cultures for up to 2 h caused a significant reduction in the TEER values, however, it did not drop within the first 10 and 20 min for CRS and non-CRS control HNECs. The paracellular permeability, cell viability, IL-6 secretion and CBF remained unchanged. No GSCS was observed within or transported across HNECs. In conclusion, application of GSCS to HNECs is devoid of toxic effects.


Assuntos
Nanopartículas Metálicas/toxicidade , Mucosa Nasal/efeitos dos fármacos , Prata/toxicidade , Permeabilidade da Membrana Celular , Células Cultivadas , Cílios/efeitos dos fármacos , Dextranos/farmacocinética , Impedância Elétrica , Ensaio de Imunoadsorção Enzimática/métodos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Química Verde/métodos , Humanos , Mucosa Nasal/citologia , Prata/química
7.
Macromol Biosci ; 21(11): e2100277, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390164

RESUMO

The current clinical goal for managing chronic rhinosinusitis (CRS), a heterogenous disease of the paranasal sinuses, is to control inflammation, yet adjunct therapies that promote mucosal regeneration can improve the long-term health of the upper airways. The small natural openings to the sinuses, however, limit the efficacy of traditional drug delivery methods (i.e., nasal sprays and irrigation). Accordingly, a conformable thermoresponsive and controlled release system ("TEMPS", Thermogel, Extended-release Microsphere-based delivery to the Paranasal Sinuses) is developed. The poly(lactic-co-glycolic acid) microsphere component enables the encapsulation of numerous therapeutics, such as retinoic acid (RA), an analog of vitamin A (VA). Studies in CRS patients and preclinical models have shown that aqueous RA or VA gels promoted the differentiation of ciliated cells and improved mucosal healing following repeat applications. In the present study, TEMPS is designed for the controlled release of RA such that a single dose of RA-TEMPS delivers bioactive drug for at least 30 days. Furthermore, as TEMPS will be in direct contact with sinonasal tissue, its compatibility with ciliated human nasal epithelium is explored. After ex vivo incubation in thermogel for 24 h, cilia motility is maintained, providing evidence that TEMPS can be compatible for application along the sinonasal epithelium.


Assuntos
Materiais Biocompatíveis , Cílios/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Regeneração/efeitos dos fármacos , Sinusite/tratamento farmacológico , Cílios/fisiologia , Microesferas , Temperatura
8.
Cells ; 10(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208028

RESUMO

Etoposide (ETO) has been used in treating adrenocortical tumor (ACT) cells. Our previous study showed that ETO inhibits ACT cell growth. In the present study, we show that ETO treatment at IC50 (10 µM) inhibited ACT cell growth by inducing cellular senescence rather than apoptosis. Several markers of cellular senescence, including enlarged nuclei, activated senescence-associated ß-galactosidase activity, elevated levels of p53 and p21, and down-regulation of Lamin B1, were observed. We further found that ETO induced multiple centrosomes. The inhibition of multiple centrosomes accomplished by treating cells with either roscovitine or centrinone or through the overexpression of NR5A1/SF-1 alleviated ETO-induced senescence, suggesting that ETO triggered senescence via multiple centrosomes. Primary cilia also played a role in ETO-induced senescence. In the mechanism, DNA-PK-Chk2 signaling was activated by ETO treatment; inhibition of this signaling cascade alleviated multiple ETO-induced centrosomes and primary cilia followed by reducing cellular senescence. In addition to DNA damage signaling, autophagy was also triggered by ETO treatment for centrosomal events and senescence. Importantly, the inactivation of DNA-PK-Chk2 signaling reduced ETO-triggered autophagy; however, the inhibition of autophagy did not affect DNA-PK-Chk2 activation. Thus, ETO activated the DNA-PK-Chk2 cascade to facilitate autophagy. The activated autophagy further induced multiple centrosomes and primary cilia followed by triggering senescence.


Assuntos
Neoplasias do Córtex Suprarrenal/patologia , Senescência Celular , Centrossomo/fisiologia , Cílios/efeitos dos fármacos , Etoposídeo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/genética , Neoplasias do Córtex Suprarrenal/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Autofagia , Proliferação de Células , Centrossomo/efeitos dos fármacos , Dano ao DNA , Humanos , Células Tumorais Cultivadas
9.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210094

RESUMO

Cigarette smoking (CS) is one of the main factors related to avoidable diseases and death across the world. Cigarette smoke consists of numerous toxic compounds that contribute to the development of osteoporosis and fracture nonunion. Exposure to pulsed electromagnetic fields (PEMF) was proven to be a safe and effective therapy to support bone fracture healing. The aims of this study were to investigate if extremely low frequency (ELF-) PEMFs may be beneficial to treat CS-related bone disease, and which effect the duration of the exposure has. In this study, immortalized human mesenchymal stem cells (SCP-1 cells) impaired by 5% cigarette smoke extract (CSE) were exposed to ELF-PEMFs (16 Hz) with daily exposure ranging from 7 min to 90 min. Cell viability, adhesion, and spreading were evaluated by Sulforhodamine B, Calcein-AM staining, and Phalloidin-TRITC/Hoechst 33342 staining. A migration assay kit was used to determine cell migration. Changes in TGF-ß signaling were evaluated with an adenoviral Smad2/3 reporter assay, RT-PCR, and Western blot. The structure and distribution of primary cilia were analyzed with immunofluorescent staining. Our data indicate that 30 min daily exposure to a specific ELF-PEMF most effectively promoted cell viability, enhanced cell adhesion and spreading, accelerated migration, and protected TGF-ß signaling from CSE-induced harm. In summary, the current results provide evidence that ELF-PEMF can be used to support early bone healing in patients who smoke.


Assuntos
Cílios/metabolismo , Células-Tronco Mesenquimais/citologia , Fumaça/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/imunologia , Campos Eletromagnéticos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Transdução de Sinais/efeitos dos fármacos
10.
Front Endocrinol (Lausanne) ; 12: 685228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168619

RESUMO

Primary cilia (PC) are microtubule-based organelles that are present on nearly all thyroid follicle cells and play an important role in physiological development and in maintaining the dynamic homeostasis of thyroid follicles. PC are generally lost in many thyroid cancers (TCs), and this loss has been linked to the malignant transformation of thyrocytes, which is regulated by PC-mediated signaling reciprocity between the stroma and cancer cells. Restoring PC on TC cells is a possible promising therapeutic strategy, and the therapeutic response and prognosis of TC are associated with the presence or absence of PC. This review mainly discusses the role of PC in the normal thyroid and TC as well as their potential clinical utility.


Assuntos
Cílios , Neoplasias da Glândula Tireoide , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cílios/patologia , Proteínas Hedgehog/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
11.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066907

RESUMO

Primary ciliary dyskinesia (PCD) is a rare disease with autosomal recessive inheritance, caused mostly by bi-allelic gene mutations that impair motile cilia structure and function. Currently, there are no causal treatments for PCD. In many disease models, translational readthrough of premature termination codons (PTC-readthrough) induced by aminoglycosides has been proposed as an effective way of restoring functional protein expression and reducing disease symptoms. However, variable outcomes of pre-clinical trials and toxicity associated with long-term use of aminoglycosides prompt the search for other compounds that might overcome these problems. Because a high proportion of PCD-causing variants are nonsense mutations, readthrough therapies are an attractive option. We tested a group of chemical compounds with known PTC-readthrough potential (ataluren, azithromycin, tylosin, amlexanox, and the experimental compound TC007), collectively referred to as non-aminoglycosides (NAGs). We investigated their PTC-readthrough efficiency in six PTC mutations found in Polish PCD patients, in the context of cell and cilia health, and in comparison to the previously tested aminoglycosides. The NAGs did not compromise the viability of the primary nasal respiratory epithelial cells, and the ciliary beat frequency was retained, similar to what was observed for gentamicin. In HEK293 cells transfected with six PTC-containing inserts, the tested compounds stimulated PTC-readthrough but with lower efficiency than aminoglycosides. The study allowed us to select compounds with minimal negative impact on cell viability and function but still the potential to induce PTC-readthrough.


Assuntos
Aminoglicosídeos/farmacologia , Transtornos da Motilidade Ciliar/genética , Códon sem Sentido/genética , Mutação/genética , Biossíntese de Proteínas/genética , Morte Celular/efeitos dos fármacos , Células Cultivadas , Cílios/efeitos dos fármacos , Cílios/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Nariz/patologia , Biossíntese de Proteínas/efeitos dos fármacos
12.
Sci Rep ; 11(1): 10461, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34002003

RESUMO

Loss of primary cilia in cells deficient for the tumor suppressor von Hippel Lindau (VHL) arise from elevated Aurora Kinase A (AURKA) levels. VHL in its role as an E3 ubiquitin ligase targets AURKA for degradation and in the absence of VHL, high levels of AURKA result in destabilization of the primary cilium. We identified NVP-BEZ235, a dual PI3K/AKT and mTOR inhibitor, in an image-based high throughput screen, as a small molecule that restored primary cilia in VHL-deficient cells. We identified the ability of AKT to modulate AURKA expression at the transcript and protein level. Independent modulation of AKT and mTOR signaling decreased AURKA expression in cells confirming AURKA as a new signaling node downstream of the PI3K cascade. Corroborating these data, a genetic knockdown of AKT in cells deficient for VHL rescued the ability of these cells to ciliate. Finally, inhibition of AKT/mTOR using NVP-BEZ235 was efficacious in reducing tumor burden in a 786-0 xenograft model of renal cell carcinoma. These data highlight a previously unappreciated signaling node downstream of the AKT/mTOR pathway via AURKA that can be targeted in VHL-null cells to restore ciliogenesis.


Assuntos
Aurora Quinase A/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Cílios/efeitos dos fármacos , Imidazóis/farmacologia , Neoplasias Renais/tratamento farmacológico , Quinolinas/farmacologia , Doença de von Hippel-Lindau/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Cílios/patologia , Técnicas de Silenciamento de Genes , Humanos , Imidazóis/uso terapêutico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Doença de von Hippel-Lindau/complicações , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/patologia
13.
Biochem Biophys Res Commun ; 555: 190-195, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33823365

RESUMO

Primary cilia are microtubule-based organelles that are involved in sensing micro-environmental cues and regulating cellular homeostasis via triggering signaling cascades. Hypoxia is one of the most common environmental stresses that organ and tissue cells may often encounter during embryogenesis, cell differentiation, infection, inflammation, injury, cerebral and cardiac ischemia, or tumorigenesis. Although hypoxia has been reported to promote or inhibit primary ciliogenesis in different tissues or cultured cell lines, the role of hypoxia in ciliogenesis is controversial and still unclear. Here we investigated the primary cilia change under cobalt chloride (CoCl2)-simulated hypoxia in immortalized human retina pigment epithelial-1 (hTERT RPE-1) cells. We found CoCl2 treatment elongated primary cilia in a time- and dose-dependent manner. The prolonged cilia recovered back to near normal length when CoCl2 was washed out from the cell culture medium. Under CoCl2-simulated hypoxia, the protein expression levels of HIF-1/2α and acetylated-α-tubulin (cilia marker) were increased, while the protein expression level of Rabaptin-5 is decreased during hypoxia. Taken together, our results suggest that hypoxia may elongate primary cilia by downregulating Rabaptin-5 involved endocytosis. The coordination between endocytosis and ciliogenesis may be utilized by cells to adapt to hypoxia.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cobalto/toxicidade , Epitélio Pigmentado da Retina/citologia , Hipóxia Celular/fisiologia , Linhagem Celular Transformada , Cobalto/administração & dosagem , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Humanos , Prolil Hidroxilases/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Telomerase/genética , Proteínas de Transporte Vesicular/metabolismo
14.
Elife ; 102021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33650969

RESUMO

Primary cilia are compartmentalized sensory organelles present on the majority of neurons in the mammalian brain throughout adulthood. Recent evidence suggests that cilia regulate multiple aspects of neuronal development, including the maintenance of neuronal connectivity. However, whether ciliary signals can dynamically modulate postnatal circuit excitability is unknown. Here we show that acute cell-autonomous knockdown of ciliary signaling rapidly strengthens glutamatergic inputs onto cultured rat neocortical pyramidal neurons and increases spontaneous firing. This increased excitability occurs without changes to passive neuronal properties or intrinsic excitability. Further, the neuropeptide receptor somatostatin receptor 3 (SSTR3) is localized nearly exclusively to excitatory neuron cilia both in vivo and in culture, and pharmacological manipulation of SSTR3 signaling bidirectionally modulates excitatory synaptic inputs onto these neurons. Our results indicate that ciliary neuropeptidergic signaling dynamically modulates excitatory synapses and suggest that defects in this regulation may underlie a subset of behavioral and cognitive disorders associated with ciliopathies.


Assuntos
Cílios/efeitos dos fármacos , Células Piramidais/fisiologia , Receptores de Somatostatina/efeitos dos fármacos , Sinapses/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Neocórtex/citologia , Técnicas de Patch-Clamp , Ratos Long-Evans , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/antagonistas & inibidores , Transdução de Sinais
15.
Int J Med Sci ; 18(5): 1247-1258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33526986

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) that is one of the most commonly used phthalates in manufacturing plastic wares regulates tumorigenesis. Thymosin beta-4 (TB4), an actin-sequestering protein, has been reported as a novel regulator to form primary cilia that are antenna-like organelles playing a role in various physiological homeostasis and pathological development including tumorigenesis. Here, we investigated whether DEHP affects tumor growth via primary cilium (PC) formation via the axis of TB4 gene expression and the production of reactive oxygen species (ROS). Tumor growth was increased by DEHP treatment that enhanced TB4 expression, PC formation and ROS production. The number of cells with primary cilia was enhanced time-dependently higher in HeLa cells incubated in the culture medium with 0.1% fetal bovine serum (FBS). The number of cells with primary cilia was decreased by the inhibition of TB4 expression. The incubation of cells with 0.1% FBS enhanced ROS production and the transcriptional activity of TB4 that was reduced by ciliobrevin A (CilioA), the inhibitor of ciliogenesis. ROS production was decreased by catalase treatment but not by mito-TEMPO, which affected to PC formation with the same trend. H2O2 production was reduced by siRNA-based inhibition of TB4 expression. H2O2 also increased the number of ciliated cells, which was reduced by siRNA-TB4 or the co-incubation with CilioA. Tumor cell viability was maintained by ciliogenesis, which was correlated with the changes of intracellular ATP amount rather than a simple mitochondrial enzyme activity. TB4 overexpression enhanced PC formation and DEHP-induced tumor growth. Taken together, data demonstrate that DEHP-induced tumor growth might be controlled by PC formation via TB4-H2O2 axis. Therefore, it suggests that TB4 could be a novel bio-marker to expect the risk of DEHP on tumor growth.


Assuntos
Dietilexilftalato/toxicidade , Peróxido de Hidrogênio/metabolismo , Melanoma Experimental/patologia , Plastificantes/toxicidade , Neoplasias Cutâneas/patologia , Timosina/metabolismo , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Sobrevivência Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Dietilexilftalato/administração & dosagem , Células HEK293 , Células HeLa , Humanos , Injeções Intraperitoneais , Masculino , Melanoma Experimental/induzido quimicamente , Camundongos , Plastificantes/administração & dosagem , Neoplasias Cutâneas/induzido quimicamente
16.
Sci Rep ; 11(1): 2232, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500561

RESUMO

Airborne fine dust particles (FDPs) have been identified as major toxins in air pollution that threaten human respiratory health. While searching for an anti-FDP reagent, we found that green tea extract (GTE) and fractions rich in flavonol glycosides (FLGs) and crude tea polysaccharides (CTPs) had protective effects against FDP-stimulated cellular damage in the BEAS-2B airway epithelial cell line. The GTE, FLGs, and CTPs significantly increased viability and lowered oxidative stress levels in FDP-treated cells. Combined treatment with GTE, FLGs, and CTPs also exerted synergistic protective effects on cells and attenuated FDP-induced elevations in inflammatory gene expression. Moreover, the green tea components increased the proportion of ciliated cells and upregulated ciliogenesis in the airway in FDP-stimulated BEAS-2B cells. Our findings provide insights into how natural phytochemicals protect the airway and suggest that green tea could be used to reduce FDP-induced airway damage as an ingredient in pharmaceutical, nutraceutical, and also cosmeceutical products.


Assuntos
Catequina/uso terapêutico , Extratos Vegetais/uso terapêutico , Polissacarídeos/uso terapêutico , Chá/química , Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
17.
Nat Commun ; 12(1): 662, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510165

RESUMO

Dynamic assembly and disassembly of primary cilia controls embryonic development and tissue homeostasis. Dysregulation of ciliogenesis causes human developmental diseases termed ciliopathies. Cell-intrinsic regulatory mechanisms of cilia disassembly have been well-studied. The extracellular cues controlling cilia disassembly remain elusive, however. Here, we show that lysophosphatidic acid (LPA), a multifunctional bioactive phospholipid, acts as a physiological extracellular factor to initiate cilia disassembly and promote neurogenesis. Through systematic analysis of serum components, we identify a small molecular-LPA as the major driver of cilia disassembly. Genetic inactivation and pharmacological inhibition of LPA receptor 1 (LPAR1) abrogate cilia disassembly triggered by serum. The LPA-LPAR-G-protein pathway promotes the transcription and phosphorylation of cilia disassembly factors-Aurora A, through activating the transcription coactivators YAP/TAZ and calcium/CaM pathway, respectively. Deletion of Lpar1 in mice causes abnormally elongated cilia and decreased proliferation in neural progenitor cells, thereby resulting in defective neurogenesis. Collectively, our findings establish LPA as a physiological initiator of cilia disassembly and suggest targeting the metabolism of LPA and the LPA pathway as potential therapies for diseases with dysfunctional ciliogenesis.


Assuntos
Cílios/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Neurogênese/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Transdução de Sinais , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cílios/genética , Cílios/metabolismo , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Ligação Proteica , Interferência de RNA , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo
18.
Biochem Biophys Res Commun ; 544: 38-43, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33516880

RESUMO

Cobalt ions are the main wear particles associated with orthopaedic implants, causing adverse complications due to cytotoxicity and inflammatory mediators. Recent studies have shown that sub-toxic levels of cobalt ions regulate matrix synthesis and inflammation, but the influence of cobalt ions on mechanotransduction remains unclear. Previously, we reported that sub-toxic levels of cobalt ions modulated primary cilia, which are crucial for mechanotransduction. This study therefore aimed to investigate the effect of cobalt ions on chondrocyte mechanosensation in response to cyclic tensile strain and the association with primary cilia. Sub-toxic levels of cobalt ions impaired chondrocyte mechanosensation and affected the gene expression of aggrecan, collagen II and MMP-13. Moreover, cobalt ions induced HDAC6-dependent primary cilia disassembly, which was associated with either cytoplasmic or ciliary α-tubulin deacetylation. Pharmaceutical HDAC6 inhibition with tubacin restored primary cilia length and mechanotransduction, whereas chemical depletion of primary cilia by chloral hydrate prevented mechanosignalling. Thus, sub-toxic levels of cobalt ions impaired chondrocyte mechanotransduction via HDAC6 activation, which was associated with tubulin deacetylation and primary cilia shortening.


Assuntos
Anilidas/farmacologia , Condrócitos/patologia , Cílios/patologia , Cobalto/toxicidade , Ácidos Hidroxâmicos/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Mecanotransdução Celular , Animais , Bovinos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Cílios/efeitos dos fármacos , Cílios/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Oligoelementos/toxicidade
19.
Pflugers Arch ; 473(2): 287-311, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33386991

RESUMO

TGF-ß1 is a major mediator of airway tissue remodelling during atopic asthma and affects tight junctions (TJs) of airway epithelia. However, its impact on TJs of ciliated epithelia is sparsely investigated. Herein we elaborated effects of TGF-ß1 on TJs of primary human bronchial epithelial cells. We demonstrate that TGF-ß1 activates TGF-ß1 receptors TGFBR1 and TGFBR2 resulting in ALK5-mediated phosphorylation of SMAD2. We observed that TGFBR1 and -R2 localize specifically on motile cilia. TGF-ß1 activated accumulation of phosphorylated SMAD2 (pSMAD2-C) at centrioles of motile cilia and at cell nuclei. This triggered an increase in paracellular permeability via cellular redistribution of claudin 3 (CLDN3) from TJs into cell nuclei followed by disruption of epithelial integrity and formation of epithelial lesions. Only ciliated cells express TGF-ß1 receptors; however, nuclear accumulations of pSMAD2-C and CLDN3 redistribution were observed with similar time course in ciliated and non-ciliated cells. In summary, we demonstrate a role of motile cilia in TGF-ß1 sensing and showed that TGF-ß1 disturbs TJ permeability of conductive airway epithelia by redistributing CLDN3 from TJs into cell nuclei. We conclude that the observed effects contribute to loss of epithelial integrity during atopic asthma.


Assuntos
Brônquios/efeitos dos fármacos , Cílios/efeitos dos fármacos , Claudina-3/metabolismo , Células Epiteliais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Brônquios/metabolismo , Células Cultivadas , Cílios/metabolismo , Claudina-3/genética , Impedância Elétrica , Células Epiteliais/metabolismo , Humanos , Permeabilidade , Fosforilação , Transporte Proteico , Receptor do Fator de Crescimento Transformador beta Tipo I/agonistas , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/agonistas , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Junções Íntimas/genética , Junções Íntimas/metabolismo
20.
J Biol Chem ; 296: 100156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273011

RESUMO

Determination of cellular ATP levels, a key indicator of metabolic status, is essential for the quantitative analysis of metabolism. The biciliate green alga Chlamydomonas reinhardtii is an excellent experimental organism to study ATP production pathways, including photosynthesis and respiration, particularly because it can be cultured either photoautotrophically or heterotrophically. Additionally, its cellular ATP concentration, [ATP], is reflected in the beating of its cilia. However, the methods currently used for quantifying the cellular ATP levels are time consuming or invasive. In this study, we established a rapid method for estimating cytosolic [ATP] from the ciliary beating frequency in C. reinhardtii. Using an improved method of motility reactivation in demembranated cell models, we obtained calibration curves for [ATP]-ciliary beating frequency over a physiological range of ATP concentrations. These curves allowed rapid estimation of the cytosolic [ATP] in live wild-type cells to be ∼2.0 mM in the light and ∼1.5 mM in the dark: values comparable to those obtained by other methods. Furthermore, we used this method to assess the effects of genetic mutations or inhibitors of photosynthesis or respiration quantitatively and noninvasively. This sensor-free method is a convenient tool for quickly estimating cytosolic [ATP] and studying the mechanism of ATP production in C. reinhardtii or other ciliated organisms.


Assuntos
Trifosfato de Adenosina/biossíntese , Axonema/metabolismo , Bioensaio , Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/análise , Axonema/efeitos dos fármacos , Axonema/ultraestrutura , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/ultraestrutura , Cílios/efeitos dos fármacos , Cílios/ultraestrutura , Luz , Medições Luminescentes , Magnésio/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Rotenona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...